📱 513-432-8327 | 🖾 shendesc@mail.uc.edu | 🏶 sourabh-shende.github.io | 🛅 LinkedIn

Sourabh Shende

Skills

Finite Element Analysis Machine Learning Frameworks High Performance Computing Programming Version Control

Abaqus, FEniCS, Altair, Ansys PyTorch, TensorFlow SLURM, LSF, MPI, OpenMP Python, MATLAB, Tcl, VBA, Fortran, C++, ᄠ Git

Work Experience

University of Cincinnati

GRADUATE RESEARCHER - SCIENTIFIC MACHINE LEARNING

- Developed Bayesian optimization (BO) with Gaussian processes (GP) surrogates, reducing finite element (FE) function evaluations by **10**x to discover optimal actuating designs for origami-inspired folding structures.
- Enhanced BO with gradient and anisotropy data, achieving a **3x** speedup in optimal design discovery.
- Applied anisotropy-enriched BO for material calibration of hyperelastic Yeoh models for porcine meniscus.
- Developed a physics-informed machine learning (PIML) framework using system energy minimization to evaluate buckling deformation in hyperelastic multistable structures, eliminating the need for eigenvalue solutions required in finite element methods.
- Developed a physics-informed machine learning (PIML) based approach for phase-field plasticity at the mesoscale, improving plasticity parameter characterization by **6x**.

Innovative Numerics LLC

SIMULATION AND MACHINE LEARNING INTERN

- Conducted advanced finite element (FE) simulations for nontrivial projects across feminine, fabric, and family care consumer products.
- Developed Abaqus subroutines (DLOAD and UEXTERNALDB) with MPI parallelization for efficient distributed memory computations.
- Designed a graph neural network (GNN)-based machine learning framework to accelerate FE solution predictions.

P&G Digital Accelerator

GRADUATE RESEARCH ASSISTANT - MODELING & SIMULATION

- Built a microscale finite element (FE) model for non-woven paper, incorporating adhesive interactions using connector elements.
- Developed tensile, compression, and bending performance test protocols to assess material strength.
- Automated FE pre-processing in Abaqus and HyperMesh, using Python and Tcl scripts, reducing setup time and enhancing productivity.
- Created Python scripts to automate end-to-end workflows in Simulia Process Composer (Model First), streamlining the simulation process.
- Improved buckling mode failure prediction with a detailed finite element (FE) model for corrugated cases.
- Conducted top-load simulations for plastic tub designs to optimize structural integrity.

Altair Engineering

SOFTWARE INTEGRITY INTERN

- Automated testing of new HyperMesh features using Tcl scripts, ensuring quality and performance.
- Validated script outputs against benchmarks, improving software reliability.

Bajaj Auto Limited

SENIOR CAE ENGINEER

- Developed and validated finite element (FE) modeling methodologies for welded components, improving simulation accuracy.
- Conducted durability simulations for exhaust systems, cylinder heads, crankcases, and crankshafts, optimizing fatigue life.
- Enhanced modal assurance criteria (MAC) correlation to improve FE model validation and structural reliability.
- Standardized welding parameters (weld leg lengths, penetration, root gap, grain size, HAZ extent, hardness) to refine pass/fail criteria based on endurance tests.
- Automated finite element (FE) modeling workflows using Excel VBA and Tcl scripts, reducing setup time.

Education

University of Cincinnati

DOCTOR OF PHILOSOPHY, MECHANICAL ENGINEERING, 4.0/4.0

Dissertation: Scientific machine learning approaches for poplinger co

Dissertation: Scientific machine learning approaches for nonlinear computational mechanics
 Advisor: Dr. Kumar Vemaganti

University of Cincinnati

Master of Science, Mechanical Engineering, 4.0/4.0

• Thesis: *Bayesian topology optimization for efficient design of origami folding structures* Advisor: Dr. Kumar Vemaganti Cincinnati, Ohio, USA

Cincinnati, Ohio, USA

Jan. 2025 - April 2025

Cincinnati. Ohio. USA

Aug. 2018 - Present

Jan. 2019 - Jan. 2025

Pune, Maharashtra, India

Troy, Michigan, USA

May 2018 - Aug. 2018

Jul. 2015 - Jun. 2017

Cincinnati, US 2017 - 2020

Cincinnati, US

2020 - Present

Visvesvaraya National Institute of Technology

Bachelor of Technology, Mechanical Engineering, 9.03/10.0

• Thesis: Design and development of low-cost silicone implant used in augmentation rhinoplasty suitable for the Indian sub-continental population Advisor: Dr. Rashmi Uddanwadiker

Publications & Conferences.

- Shende, S., and Vemaganti K. "Calibration of an Elastic-Perfectly Plastic Phase Field Model using Physic-informed Machine Learning," (in preparation).
- Shende, S., and Vemaganti K. "Application of energy-based physics informed machine learning for multistable beam structure,", Mechanics of Advanced Materials and Structures (in review).
- Shende, S., and Vemaganti K." *Application of physics informed machine learning for buckling of bi-stable beam structure*,", 17th U.S. National Congress on Computational Mechanics, Albuquerque, New Mexico, July 23-27, 2023.
- Long, T., **Shende, S.**, Lin C., and Vemaganti K. "*Experiments and hyperelastic modeling of porcine meniscus show heterogeneity at high strains*", Biomechanics and Modeling in Mechanobiology, (2022).
- Shende, S., Gillman A., Buskohl P., and Vemaganti K. "Systematic cost analysis of gradient- and anisotropy-enhanced Bayesian design optimization", Structural and Multidisciplinary Optimization, Vol. 65, Issue. 8 (2022): 235-262.
- Shende, S., and Vemaganti K. "Bayesian topology optimization for efficient design of origami folding structures", 16th U.S. National Congress on Computational Mechanics July 25-29, 2021.
- Shende, S., Gillman A., Yoo D., Buskohl P., and Vemaganti K. "Bayesian Topology Optimization for Efficient Design of Origami Folding Structures", Structural and Multidisciplinary Optimization, Vol. 63, Issue. 4 (2021): 1907-1926.
- Inamdar, A., Adhe, N., Shende, S., et al., "Design and development of low-cost silicone implant used in augmentation rhinoplasty suitable for the Indian sub-continental population", International Journal of Pharma Medicine and Biological Sciences, Vol. 5, Issue. 1 (2016): 81-85.

Selected Projects

- Non-linear Hyper-elastic Response:
 - Developed MATLAB script to determine nonlinear force response of hyper-elastic materials with *Ogden* and *Gent* strain energy potentials when subjected to uni-axial, bi-axial, and pure shear deformation modes.
 - Implemented the Newton-Raphson method to solve the nonlinear equations iteratively.

• Parallelization of Linear iterative solver:

- Developed a Fortran code to solve 2D Poissons problem using conjugate gradient linear iterative solver.
- Used Message Passing Interface (MPI) to parallelize the solver with 1D and 2D domain decomposition.

Non-linear Bending of Thin Beam:

- Developed a MATLAB script to solve the nonlinear bending of the thin beam when subjected to an extreme moment of force.
- Implemented the modified Newton-Raphson method with the total Lagrangian configuration scheme under plane strain conditions for convergence between each load step.
- Multi-Layer Feed-Forward Neural Network:
 - Developed Python script for the multi-layer feed-forward neural network from scratch to classify the digit images from the MNIST dataset.
 - Implemented the backpropagation algorithm for the training of the neural networks.
- Finite Element Formulation:
 - Developed MATLAB code to formulate 2D *tria3* and *quad4* elements to solve linear static problems.
 - Validated the accuracy of the developed scripts by comparing the solution with those generated by a commercial Finite Element software package.
- Modal Parameter Estimation (MPE) and Finite Element Validation:
 - Extracted modal parameters of Circular (aluminum) and Rectangular (steel) plates using X-modal III software from captured Frequency Response Functions (FRFs).
 - Correlated modal frequencies and mode shapes with corresponding finite element models.